US009407721B2

a2z United States Patent (10) Patent No.: US 9,407,721 B2
Svoboda et al. (45) Date of Patent: Aug. 2, 2016
(54) SYSTEM AND METHOD FOR SERVER 8,392,912 B2 3/2013 Davisetal.
SELECTION USING COMPETITIVE 2010/0107172 Al 4/2010 Calinescu et al.
N !
EVALUATION 2010/0223364 Al 9/2010 Wei .ccooovvviiieins H047L()§/92/23
. . 2014/0047104 Al* 2/2014 Rodriguez HO4L 67/1008
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 709/224
. 2014/0143415 Al* 5/2014 Kazerani HO4L 43/0811
(72) Inventors: Rostislav Svoboda, Slapanice (CZ); 709/224
Pavel Slavicek, Brno (CZ); Filip Elias,
Vysni Lhoty (CZ) FOREIGN PATENT DOCUMENTS
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) wo WO 2006/004995 A2 1/2006
. . Lo . OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Stansberry, B., et al., “IBoss Application Server Clustering Guide,”
U.S.C. 154(b) by 274 days. http://docs.jboss.org/jbossas/docs/Clustering Guide/4/html-single/
, Retrieved Oct. 16, 2013, 75 pages.
(21) Appl. No.: 14/055,146 (Continued)
(22) Filed: Oct. 16, 2013
Primary Examiner — Wen-Tai Lin
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Haynes & Boone LLP
US 2015/0106422 A1l Apr. 16, 2015
57 ABSTRACT
(51) Int.CL A system and method of server selection using competitive
GO6F 15/16 (2006.01) evaluation includes receiving a service request at an arbiter
HO4L 29/08 (2006.01) running on a computing device, determining whether the
GO6F 15/173 (2006.01) service request is associated with a preferred server, and
(52) US.CL forwarding the service request to the preferred server when
CPC HO04L 67/32 (2013.01); HO4L 67/1004 the service request is associated with the preferred server.
(2013.01); HO4L 67/1025 (2013.01) When the service request is not associated with the preferred
(58) Field of Classification Search server, the method further includes using the arbiter to coor-
CPC .. H04L 67/32; HO4L 67/1004; HO04L 67/1025 dinate a competitive evaluation among a plurality of active
See application file for complete search history. servers, selecting as the preferred server a first one of the
active servers that completes processing of the service request
(56) References Cited first, and associating the preferred server with the service

U.S. PATENT DOCUMENTS

6,829,638 B1* 12/2004 McBrearty HO4L 67/1008

709/203
7,870,568 B2
8,185,909 B2

1/2011 Bernardin et al.
5/2012 Sigal et al.

request. The method further includes receiving a response to
the service request from the preferred server and returning the
response to a client. The service request is received from the
client.

20 Claims, 7 Drawing Sheets

505 *1 Recelve a service request from a client | 500

510 —

Create the preferred server
record

— 520

Search for a preferred server record
matching the service request

Record found?

Retrieve the matching
referred server record

5

555

Return the response tothe |
client 565

US 9,407,721 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

IBM Info Center, “Introducing WebSphere Application Server Edge
Components,” http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/in-
dex jsp?topic=%2Fcom.ibm.websphere.edge.
doc%2Fconcepts®2Fconcepts06.htm , Retrieved Oct. 16, 2013, 4
pages.

Tesauro, G., et al., “A Hybrid Reinforcement Learning Approach to
Autonomic Resource Allocation,” IEEE International Conference on

Autonomic Computing, 2006. ICAC °06, Jun. 13-16, 2006, pp.
65-73, 9 pages total.

Quiroz, A., et al., “Towards Autonomic Workload Provisioning for
Enterprise Grids and Clouds,” Dept. of Electr. & Computer Eng.,
Rutgers, State Univ. of New Jersey, Piscataway, Oct. 13-15, 2009, pp.
50-57, 8 pages total.

Stansberry, B., et al., “High Availability Enterprise Services with
JBoss Application Server Clusters,” http://docs.jboss.org/
jbossclustering/cluster_guide/S.1/pdf/Clustering_ Guide.pdf ,
Retrieved Oct. 16, 2013, 162 pages.

* cited by examiner

U.S. Patent Aug. 2, 2016 Sheet 1 of 7

US 9,407,721 B2

100
Client 111 \
[]
®
™ / Server 120
Client 119
FiG. 1
200
Client 211 \ / Server 231
[J [4
° Load Balancer 220 °
. / :
Client 219 \ Server 239

FIG. 2

U.S. Patent Aug. 2, 2016 Sheet 2 of 7 US 9,407,721 B2

300

310 Receive a service request from a client
)

320 Start a transaction
)

330 Process the service request
)

340 Use resources

Successful
completion?

360 w r 370

Rollback the transaction Commit the transaction

)

380 Return a response to the client

FIG. 3

U.S. Patent Aug. 2, 2016 Sheet 3 of 7 US 9,407,721 B2
400
Client 411
° .
° Arbiter <
° 420
Client 419
Server 431 Server 439
X
Application Server Application Server
441 449
Transaction Transaction
—3 Processor Processor
451 459

FIG. 4

U.S. Patent Aug. 2, 2016 Sheet 4 of 7 US 9,407,721 B2

505 Receive a service request from a client 500

Search for a preferred server record

510 . .
matching the service reguest

Yes

Record found?

525 —| Retrieve the matching
preferred server record

>)
Create the preferred server | 520 N
record 530 Update a request count

Record expired?

540 . < 550
AN
Perform a competitive Update the matching
evaluation preferred server record
555

s

Forward the service request
to the preferred server

Save the preferred server
record

-

545

Receive a response from the

preferred server ~ 560

Return the response to the
client

565

FIG. 5

U.S. Patent Aug. 2, 2016 Sheet 5 of 7 US 9,407,721 B2

600

\

610 620 630 640 650 660
\ Y \ \ \\

Y N\ A\ Y
\
\ \ A \

| Client_ID |Service_ID| Server_URL |Va|id_UntiI| Max_Requests | Request_Count

FIG. 6

535

Request count >

Max Requests /ﬁ 720

After expiration
time?

740 730
ke

Record has expired Record has not expired

FIG. 7

U.S. Patent Aug. 2, 2016 Sheet 6 of 7 US 9,407,721 B2

540

805 Initialize application servers and/or
transaction processors

810 ‘L

For each server

in the active
server list
—
815 \

Forward the service request
to the server

1

Start a transaction

820

N
825 Wait for a rollback or a

commit

830 . \L

| Record the preferred server

835

Commit
Commit or rollback?
Allow the preferred server
to commit its transaction 845
Rollback
840 ~ Jsend rollback to each of the Send rollback to each of the
active servers other active servers 850

FIG. 8

U.S. Patent Aug. 2, 2016 Sheet 7 of 7

US 9,407,721 B2

Computing Device 900

Memory 920

Processor 910

— Applications

930

Network 940

FIG. 9

US 9,407,721 B2

1

SYSTEM AND METHOD FOR SERVER
SELECTION USING COMPETITIVE
EVALUATION

BACKGROUND

The present disclosure relates generally to computing sys-
tems, and more particularly to server selection using competi-
tive evaluation.

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is a computing system.
Computing systems may vary in complexity from a single
processor operating in relative isolation to large networks of
interconnected processors. The interconnected processors
may be in close proximity to each other or separated by great
distances both physically and as distance is measured in com-
puter networking terms. The interconnected processors may
also work together in a closely cooperative fashion or in a
loose weakly coupled fashion. Because technology and pro-
cessing needs and requirements may vary between different
applications, the structure and arrangement of the computing
system may vary significantly between two different comput-
ing systems. The flexibility in computing systems allows
them to be configured for both specific users, specific uses, or
for more general purposes. Computing system may also
include a variety of hardware and software components that
may be configured to process, store, and communicate infor-
mation based on the needs of the users and the applications.

Additionally, some examples of computing systems
include non-transient, tangible machine-readable media that
include executable code that when run by one or more pro-
cessors, may cause the one or more processors to perform the
steps of methods described herein. Some common forms of
machine readable media include, for example, floppy disk,
flexible disk, hard disk, magnetic tape, any other magnetic
medium, CD-ROM, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of holes,
RAM, PROM, EPROM, FLASH-EPROM, any other
memory chip or cartridge, and/or any other medium from
which a processor or computer is adapted to read.

Computers, processors, and software systems often share
information and provide computing services for each other. In
order to do so, a server or some other computing system may
provide an interface through which service requests are made
by the other computing devices or clients. In these service-
oriented architectures (SOAs), the clients generally make a
service request by sending a request message to the server
hosting the service using, for example, a networking protocol.
The server receives the message, activates the requested ser-
vice, and returns a response message with the result. For
example, a very basic form of services is demonstrated by a
request for a web page. A client, such as a web browser, sends
a Hypertext Transport Protocol (HTTP) request to a web
server which receives the HTTP request and generates a
response containing the requested web page, that is then
returned to the web browser.

Most computing systems and clients have access to many
servers providing a large array of services that the clients are
able to use. This client-server approach, however, does not
generally include overt handling of load-related issues. For
example, when clients are able to freely select the servers
which provide each of the requested services, there are often
few controls and/or management mechanisms that prevent
and/or limit service requests from being concentrated in one
or more servers, which may become overloaded with service
requests and then may become correspondingly less respon-

40

45

2

sive in processing those service requests. This may be further
exacerbated by the use of distributed processing to handle
each service request where one server relies on other servers,
and the services they provide, to process a service request.

Accordingly, it would be desirable to provide improved
systems and methods for managing the selection of a server
for the handling of a service request.

SUMMARY

According to one example, a method of processing a ser-
vice request includes receiving the service request at an arbi-
ter running on a computing device, determining whether the
service request is associated with a preferred server, and
forwarding the service request to the preferred server when
the service request is associated with the preferred server.
When the service request is not associated with the preferred
server, the method further includes using the arbiter to coor-
dinate a competitive evaluation among a plurality of active
servers, selecting as the preferred server a first one of the
active servers that completes processing of the service request
first, and associating the preferred server with the service
request. The method further includes receiving a response to
the service request from the preferred server and returning the
response to a client. The service request is received from the
client.

According to another example, a system for processing
service requests includes a computing device comprising one
or more processors coupled to memory and an arbiter stored
in the memory and executed by the one or more processors.
The computing device is configured to communicate with a
client and a plurality of active servers. The arbiter is config-
ured to receive a service request from the client, determine
whether the service request is associated with a preferred
server. And forward the service request to the preferred server
when the service request is associated with the preferred
server. When the service request is not associated with the
preferred server, the arbiter is further configured to coordinate
a competitive evaluation among the plurality of active serv-
ers, select as the preferred server a first one of the active
servers that completes processing of the service request first,
and associate the preferred server with the service request.
The arbiter is further configured to receive a response to the
service request from the preferred server and return the
response to the client.

According to yet another example, a non-transitory
machine-readable medium comprising a first plurality of
machine-readable instructions which when executed by one
or more processors associated with an arbiter are adapted to
cause the one or more processors to perform a method includ-
ing receiving a first request from a client, determining
whether the first request is associated with a first server by
matching one or more properties of the first request to a
corresponding one or more fields of a server record associated
with the first server, and forwarding the first request to the first
server when the first request is associated with the first server.
When the first request is not associated with the first server,
the method further includes using the arbiter to coordinate a
competitive evaluation among a plurality of second servers,
selecting as the first server a first one of the second servers that
completes handling of the first request before any other of the
second servers, and associating the first server with the first
request. The method further includes receiving a response to
the first request from the first server and returning the
response to the client.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a service-oriented archi-
tecture (SOA) according to some examples.

US 9,407,721 B2

3

FIG. 2 is a simplified diagram of a load-balancing SOA
according to some examples.

FIG. 3 is a simplified diagram of a method of handling a
service request according to some examples.

FIG. 4 is a simplified diagram of an arbiter-based SOA
according to some examples.

FIG. 5 is a simplified diagram of a method of processing a
service request according to some examples.

FIG. 6 is a simplified diagram of a preferred server record
according to some examples.

FIG. 7 is a simplified diagram of a process for determining
whether a preferred server record is expired according to
some examples.

FIG. 8 is a simplified diagram of a process for performing
a competitive evaluation according to some examples.

FIG. 9 is a simplified diagram of a computing device
according to some examples.

In the figures, elements having the same designations have
the same or similar functions.

DETAILED DESCRIPTION

In the following description, specific details are set forth
describing some embodiments consistent with the present
disclosure. It will be apparent, however, to one skilled in the
art that some embodiments may be practiced without some or
all of these specific details. The specific embodiments dis-
closed herein are meant to be illustrative but not limiting. One
skilled in the art may realize other elements that, although not
specifically described here, are within the scope and the spirit
of this disclosure. In addition, to avoid unnecessary repeti-
tion, one or more features shown and described in association
with one embodiment may be incorporated into other
embodiments unless specifically described otherwise orif the
one or more features would make an embodiment non-func-
tional.

FIG. 1 is a simplified diagram of a service-oriented archi-
tecture (SOA) 100 according to some examples. As shown in
FIG. 1, SOA 100 is built around a client-services model. In
SOA 100, service requests originate from one or more clients
111-119. Each of the clients 111-119 may make service
requests that are being hosted by a server 120. Each of the
clients 111-119 may transmit one or more service request
messages to server 120, which may in turn direct each of the
service requests to the service identified in the respective
service request. Numerous mechanisms for directing the ser-
vice requests to the respective service may be used including
providing a uniform resource locator (URL) for the service in
the respective service request, providing a service name of the
service in the respective service request, and/or the like. The
service requests may also be made using protocols such as
remote procedure call, web services, and/or the like. In some
examples, clients 111-119 may use one or more networks (not
shown) to route service requests to server 120.

In some examples, client-server models, like those shown
in SOA 100, often include a limited ability to monitor and/or
manage the workload of server 120. In some examples, server
120 may accept service requests until server 120 no longer
has sufficient computing, memory, and/or other resources to
continue handling further service requests. In some
examples, server 120 may become less responsive as it is
called upon to handle more and more service requests. In
some examples, server 120 may reach a point where server
120 may have no choice butto ignore one or more new service
requests and/or drop one or more service requests already
being processed. In some examples, server 120 may use a
priority-based system for selecting the service requests to

10

15

20

25

30

35

40

45

50

55

60

65

4

handle and the service requests to ignore and/or drop. In some
examples, this approach may not be very client-friendly as
clients are left either to wonder why a request for service has
not received a response and/or are forced to delay until the
server has sufficient resources to complete the service
requests.

FIG. 2is a simplified diagram of'aload-balancing SOA 200
according to some examples. As shown in FIG. 2, SOA 200
employs a more sophisticated approach to monitoring and/or
managing server workload than does SOA 100. Like SOA
100, SOA 200 includes one or more clients 211-219. In some
examples, the clients 211-219 may by similar to clients 111-
119. However, unlike SOA 100, SOA 200 includes a load
balancer 220 as well as one or more servers 231-239. SOA
200 uses load balancer 220 to monitor the workload of each of
the servers 231-239 to better manage the workload of each of
the servers 231-239 in an effort to make the servers 231-239
more responsive to service requests. In some examples, load
balancer 220 may monitor the workload of each of the servers
231-239 in order to evaluate how busy each of the servers
231-239 may be. In some examples, load balancer 220 may
monitor processor usage, memory usage, and/or other work-
load indicators for each of the servers 231-239.

Load balancer 220 may further act as a dispatcher for each
of the servers 231-239. Rather than make service requests
directly to servers 231-239, the clients 211-219 may make
their service requests through load balancer 220. As load
balancer 220 receives service requests from clients 211-219,
load balancer 220 may examine each of the service requests
and then direct the service requests to one or more of the
servers selected from servers 231-239 based on the monitored
workloads of the servers 231-239 and/or one or more priority
schemes. In some examples, the priority schemes may
include round-robin, weighted round-robin, and/or other
strategies. This may allow load balancer 220 to direct service
requests to servers with lighter workloads with the assump-
tion being that servers with lighter workloads are more likely
to be able to generate a response in a shorter period of time.

Load balancer 220, however, is limited in its ability to fully
evaluate the responsiveness of each of the servers 231-239.
Load balancer 220 is typically limited to monitoring and/or
evaluating resource usage of the servers 231-239 in isolation.
Most servers are typically able to provide resource usage
information for the resources under the direct control of the
individual server. Thus, each server may only be able to
provide information on its own processor usage, memory
usage, and/or the like. This approach, however, may not
account for each of the resources that each server may be
dependent on. Each of the servers 231-239 may be reliant on
other servers in order to handle service requests. In some
examples, any of the servers 231-239 may make one or more
service requests to other servers when handling a service
request. In some examples, the other servers may include
database servers, messaging servers, distributed storage sys-
tems, and/or the like. Without evaluating the responsiveness
of these other servers, it is generally not possible to predict
how responsive any given server may be to a service request.
As an example, a server with low processor and memory
usage may appear to be a good candidate to rapidly handle a
service request, but because that server may be more remotely
located in a network, it may ultimately take longer to handle
the service request than a more centrally located server, even
when the more centrally located server has a higher apparent
workload. Thus, it may be valuable to examine the overall
responsiveness of a server to a request for a particular service
before directing future service requests for that particular
service to the server.

US 9,407,721 B2

5

To better understand how the overall responsiveness of a
server may be to a service request, it is helpful to know how
service requests are typically handled. FIG. 3 is a simplified
diagram of a method 300 of handling a service request
according to some examples. In some examples, one or more
of the processes 310-380 of method 300 may be imple-
mented, at least in part, in the form of executable code stored
on non-transient, tangible, machine readable media that when
run by one or more processors (e.g., one or more processors in
any of the servers 120 and/or 231-239) may cause the one or
more processors to perform one or more of the processes
310-380. In some examples, method 300 may be imple-
mented by an application server being hosted on any of the
servers 120 and/or 231-239.

Ataprocess 310, a service request is received from a client.
In some examples, the service request may be received by an
application server running on a server. In some examples, the
server may be any of the servers 120 and/or 231-239. In some
examples, the service request may be received from a client of
the application server, such as any of the clients 111-119
and/or 211-219, whether or not the service request is dis-
patched through a load balancer. In some examples, the
request for service may be received over a network. In some
examples, the service request may be identified by a name
and/or a uniform resource locator (URL). In some examples,
the service request may ask the application server to execute
a service using one or more parameters and/or data included
in the service request.

Ataprocess 320, a transaction is started. To avoid conflicts
that may arise due to parallel processing, many application
servers typically wrap a service request within a transaction.
This may help to avoid over-committing a limited resource.
As an example, transactions may typically be used to avoid
selling the same seat at a concert to more than one purchaser
even though the seat selling system may be selling seats
simultaneously to multiple purchasers. In some examples, the
transaction helps ensure that mutually dependent processing
is all able to successfully complete. Using the example of the
concert seat, this may include removing the seat from inven-
tory, issuing the ticket to the purchaser, and receiving pay-
ment. [fall three of these mutually dependent processings are
not able to successfully complete, none of them should be
allowed to complete. In some examples, the transaction may
be managed by a transaction processor. In some examples, the
transaction may be started by making an application pro-
gramming interface (API) call, a remote procedure call, a
service request, and/or the like to the transaction processor. In
some examples, the transaction processor may implement a
transaction API, such as the Java Transaction API.

At a process 330, the service request is processed. The
service request received during process 310 is evaluated by
the application server and the requested service is executed by
the application server using the data and/or parameters, if any,
included in the service request.

At a process 340, resources are used. As the application
server processes the service request during process 330, zero
or more resources may be used. In some examples, the
resources may be limited to local resources available on the
server hosting the application server. In some examples, the
local resources may include processing time, memory, and/or
other local hardware and/or software resources. In some
examples, the resources may additionally include remote
resources provided by other servers. In some examples, the
remote resources may include database services, messaging
services, storage, and/or the like.

At a process 350, it is determined whether the service
request is successtully completed. In some examples, it may

10

15

20

25

30

35

40

45

50

55

60

65

6

not be possible to fully complete the processing of the service
request because of the unavailability of resources, including
limited resources. In some examples, it may not be possible to
fully complete the processing of the service request because
one or more of a plurality of mutually dependent processing
may not complete. In some examples, it may not be possible
to fully complete the processing of the service request
because the service request itself may not be fully satisfied.
When the service request is not successfully completed, the
transaction is rolled back using a process 360. When the
service request is successtully completed, the transaction is
committed using a process 370.

At the process 360, the transaction is rolled back. Because
the service request may not be successfully completed, the
transaction started during process 320 is rolled back. In some
examples, some of the processing performed during pro-
cesses 330 and/or 340 is reversed and/or rolled back to limit
the likelihood of inconsistencies. As an example, a “sale” of a
concert ticket to a purchaser may be rolled back when a
corresponding payment request is denied so that the concert
ticket may be purchased by someone else. As another
example, when a “purchased” concert ticket is not available
(e.g., because a hold period is expired), any payment request
that is pending should be withdrawn. Once the transaction is
rolled back, a response to the service request is returned to the
client using a process 380.

At the process 370, the transaction is committed. When the
service request is successfully completed, the processing for
the service is finalized as part of the committing of the trans-
action started during process 320. This helps ensure that each
of' the plurality of mutually dependent processings is guaran-
teed to finish. Once the transaction is committed, the response
to the service request is returned to the client using the process
380.

At the process 380, the response is returned to the client.
Whether or not the transaction wrapped around the service
request is committed or rolled back, the application server
generates a response that is returned to the client. This
informs the client of the final result and/or final status of the
service request sent from the client during process 310. When
the transaction is rolled back using process 360, the response
may include an error and/or other status message. When the
transaction is committed using process 370, the response may
include the results of the service request.

FIG. 4 is a simplified diagram of an arbiter-based SOA 400
according to some examples. As shown in FIG. 3, SOA 400 is
built around a client-server model. Like SOAs 100 and 200,
SOA 400 is able to receive service requests from one or more
clients 411-419. In some examples, any of clients 411-419
may be similar to clients 111-119 and/or 211-219. SOA 400
further includes an arbiter 420 and one or more servers 431-
439. Rather than make their service requests directly to the
servers 431-439, the clients 411-419 make their service
requests through arbiter 420.

Arbiter 420 is designed to receive service requests from the
clients 411-419 and direct them to one of the servers 431-439
for processing. Rather than use the load balancing model of
SOA 200 that is designed to balance the load across servers
431-439, arbiter 420 selects a preferred server from among
servers 431-439 that arbiter 420 believes is likely to be the
most responsive to the service request. In order to determine
the responsiveness of the servers 431-439 to particular ser-
vice requests, arbiter 420 is using a competitive evaluation
approach. More specifically, when arbiter 420 receives a ser-
vice request from one of the clients 411-419 that has not been
recently evaluated, arbiter 420 forwards the service request to
two or more of the servers 431-439, in parallel, and then

US 9,407,721 B2

7

monitors to see which of the servers 431-439 is able to com-
plete the request in the shortest period of time. The server that
completes the request in the shortest period of time becomes
the preferred server for the evaluated service. Thus, the serv-
ers 431-439 are competitively evaluated to determine the
preferred server. The preferred server is then recorded so that
future service requests for that service are preferably directed
to the preferred server until another competitive evaluation
takes place. By using a competitive evaluation of the servers
431-439 to determine the preferred server, arbiter 420 is able
to account for not only the relative workload of each of the
servers 431-439, but it can also take into account the effects
on responsiveness due to the use of resources that are not part
of the respective server. This allows arbiter 420 to more
holistically evaluate the ability of each of the servers 431-439
to handle the service request.

According to some examples, arbiter 420 may monitor the
completion time of each of the servers 431-439 involved in a
competitive evaluation by coordinating with a respective
application server 441-449 and/or a respective transaction
processor or transaction manager 451-459 in each of the
servers 431-439. As discussed above with respect to FIG. 3,
servers 431-439 are each typically managing the service
requests they receive using the respective application server
441-449. These application servers 441-449 are also typically
wrapping each service request in a transaction. In some
examples, each of these transactions may be managed by the
respective transaction processor 451-459. By monitoring
when the transaction processers 451-459 receive rollback
and/or commit requests from the application servers 441-449,
arbiter 420 may be able to determine which of the servers
431-439 involved in the competitive evaluation is able to
complete the service request first. Thus, arbiter 420 may
identify the preferred server. Use of the transaction proces-
sors 451-459 also helps arbiter 420 address potential undes-
ired side-effects that may occur as a result of the parallel
processing of the same service request in more than one of the
servers 431-439. As each of the parallel service requests that
are part of the competitive evaluation complete and request
either a rollback or a commit from the respective transaction
processor 451-459 in the corresponding server 431-439, the
respective transaction processor 451-459 may notify arbiter
420 and request confirmation from arbiter 420 before allow-
ing the rollback or commit to complete. This enables arbiter
420to allow the preferred server to commit its transaction and
then further allows arbiter 420 to block the other servers from
committing their respective transactions, thus forcing the
other servers to rollback their transactions and the related
processing. The helps address any issues that may result from
multiple servers processing the same service request in par-
allel.

In a typical design for a transaction processor, decisions
regarding whether to allow rollbacks and/or commits are
generally handled by the transaction processor alone. To sup-
port the monitoring of transactions by arbiter 420 and/or to
give arbiter 420 the ability to supervise rollbacks and/or com-
mits, the application servers 441-449 and/or transaction pro-
cessors 451-459 in servers 431-439 are generally enhanced.
In some examples, each of the application servers 441-449
may be enhanced to add a competitive evaluation resource to
the end of each service request. As each of the service requests
finishes in the respective application server 441-449, the com-
petitive evaluation resource is used to handle the rollback
and/or commit request. The competitive evaluation resource
may then notify arbiter 420 for the rollback and/or commit
request and receive instructions from arbiter 420 on whether
to allow the commit request or whether a rollback should be

10

15

20

25

30

35

40

45

50

55

60

65

8

forced. In some examples, aspect-oriented programming
(AOP) technologies, such as the AOP features of the Java
programming language, may be used to insert the competitive
evaluation resource at the end of each transaction. In some
examples, a transaction processor that supports customiza-
tion of the rollback and commit operations may be used to add
the monitoring and/or supervision of the rollback and commit
requests. In some examples, the Open XA architecture of the
Java Transaction API may be used to insert, at run time, a
competitive evaluation resource into the rollback and/or com-
mit request handling that may involve arbiter 420 in rollback
and/or commit decision making and handling.

As discussed above and further emphasized here, FIG. 4 is
merely an example which should not unduly limit the scope of
the claims. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. In some
examples, the servers 431-439 and/or arbiter 420 may share
one or more transaction processors. As long as each of the
transaction processors coordinates with arbiter 420 before
allowing a transaction to either rollback or commit, arbiter
420 may monitor any ongoing competitive evaluation, deter-
mine a corresponding preferred server, and/or correct for any
issues associated with the parallel processing of the same
service request by multiple servers.

FIG. 5 is a simplified diagram of a method 500 of process-
ing a service request according to some examples. In some
examples, one or more of the processes 505-565 of method
500 may be implemented, at least in part, in the form of
executable code stored on non-transient, tangible, machine
readable media that when run by one or more processors (e.g.,
one or more processors associated with arbiter 420) may
cause the one or more processors to perform one or more of
the processes 505-565. In some examples, method 500 may
be implemented by arbiter 420 in cooperation with servers
431-439, application servers 441-449, and transaction pro-
cessors 451-459.

Ataprocess 505, a service request is received from a client.
In some examples, the service request may be received by an
arbiter, such as arbiter 420. In some examples, the service
request may be received from a client, such as any of the
clients 111-119, 211-219, and/or 411-419. In some examples,
the request for service may be received over a network. In
some examples, the service request may be identified by a
name and/or a uniform resource locator (URL). In some
examples, the service request may ask the application server
to execute a service using one or more parameters and/or data
included in the service request.

At a process 510, a preferred server record matching the
service request is searched for. The service request received
during process 505 is examined to determine one or more
characteristics of the service request. In some examples, the
characteristics may include a client identifier (ID) associated
with the client making the service request, a service ID that
uniquely identifies the service being requested, and/or the
like. Using these determined characteristics, a data structure
and/or a database is searched to locate a matching preferred
server record. In some examples, a database query and/or the
like is used to search for the matching preferred server record.
In some examples, the matching record may be included in
the data structure and/or the database as a result of a prior
competitive evaluation performed as a result of a prior service
request matching the same characteristics.

An example of a possible preferred server record is now
discussed in further detail before returning to the remaining
processes of method 500. FIG. 6 is a simplified diagram of a
preferred server record 600 according to some examples. As
shown in FIG. 6, preferred server record 600 may include

US 9,407,721 B2

9

several fields including a client_ID field 610, a service_ID
field 620, a server_URL field 630, a valid_until field 640, a
max_requests field 650, a request_count field 660, as well as
other appropriate fields to identify service requests, associate
them with preferred servers, manage the competitive evalua-
tion process, and/or the like.

The client_ID field 610 may be used to associate the pre-
ferred server with the client making the service request.
Because clients often tend to make use of the same services in
similar and/or related ways, the server that is most responsive
to one service request from the client associated with the
client_ID in the client_ID field 610 is more likely to continue
to be more responsive to other service requests from the same
client. In some examples, the data structure and/or the data-
base may be indexed and/or keyed based on the client_ID
field 610.

The service_ID field 620 may be used to associate the
preferred server with the particular service requested in the
service request. The server that is most responsive in process-
ing the service associated with the service_ID in the servi-
ce_ID field 620 is more likely to be more responsive to other
service requests for the same service. In some examples, the
data structure and/or the database may be indexed and/or
keyed based on the service_ID field 620.

The server_URL field 630 may be used to identify the
preferred server associated with the preferred server record
600. In some examples, the server_URL field 630 may
include an IP address of the preferred server, a TCP port of
requested service, a locator for a web services definition
language (WSDL) definition file, and/or the like. The arbiter
may use the server_URL field 630 to direct the service request
to the preferred server.

The valid_until field 640 may be used to indicate when the
preferred server record 600 is set to expire. Because work-
loads are constantly changing in servers and/or for the
resources used to process a service request, the competitive
evaluation process is performed periodically. The valid_until
field 640 may be used to indicate when the preferred server
record 600 expires and is not longer to be used to identify a
preferred server. In some examples, the valid_until field 640
may include a timestamp. In some examples, the valid_until
field 640 may be initially set to a desired time interval beyond
the time of the last competitive evaluation associated with the
preferred server record 600. In some examples, the desired
time interval may range from 1 to 60 minutes. In some
examples, when the valid_until field 640 is not used it may be
left blank, marked null, and/or assigned a similar value des-
ignating that the valid_until field 640 is unused.

The max_requests field 650 may be used to indicate how
many times the preferred server record 600 may be used to
identify the preferred server before preferred server record
600 expires. In some examples, when a preferred server is
used several times in succession to execute the same service,
there is a higher likelihood that the same resources may be
used repeatedly and increase the workload on those
resources. Consequently, it may be appropriate to repeat the
competitive evaluation of frequently requested services more
often than less frequently requested services. In some
examples, the max_requests field 650 may be set based on the
number of servers and/or the number of clients that are using
the arbiter. In some examples, the max_requests field 650
may range from 10 to several hundred. In some examples,
when the max_requests field 650 is not used it may be left
blank, marked null, and/or assigned a similar value designat-
ing that the max_requests field 650 is unused.

The request_count field 660 may be used to retain a run-
ning count of the number of times the preferred server record

10

15

20

25

30

35

40

45

50

55

60

65

10

600 has been used to identify a preferred server. In some
examples, the max_requests field 650 and the request_count
field 660 may alternatively be replaced by a count-down field
that indicates the number of times the preferred server record
600 may be used before it expires. Each time the preferred
server record 600 is used to identify a preferred server, the
count-down field may be decremented. In some examples,
when the request_count field 660 is not used it may be left
blank, marked null, and/or assigned a similar value designat-
ing that the request_count field 660 is unused.

Referring back to FIG. 5 and process 510, in some
examples, one or more of the client_ID field 610 and/or the
service_ID field 620 may be matched to the corresponding
characteristics of the service request. When a preferred server
record includes a client_ID in client _ID field 610 and/or a
service_ID in service_ID field 620 that match the correspond-
ing characteristics of the service request, the preferred server
identified in the server_URL field 630 may be selected as the
server to process the service request received during process
505.

At a process 515, it is determined whether the matching
preferred server record is found in the data structure and/or
the database. When the matching preferred server record is
found it is used to identify a preferred server for the service
request beginning with a process 525. When the matching
preferred server record is not found, a preferred server record
is created beginning with a process 520.

At the process 520, the preferred server record is created.
Using the characteristics of the service request determined
during process 510, the created preferred server record is
associated with the client making the service request and/or
the service identified in the service request. In some
examples, when the preferred server record 600 is used, at
least one of the client_ID field 610 and/or the service_ID field
620 are initialized based on the determined characteristics.
The remainder of the created preferred server record is com-
pleted following the competitive evaluation that begins with a
process 540.

At the process 525, the matching preferred server record is
retrieved. The matching preferred server record found during
the search of process 510 is retrieved so that it may be updated
to record the current request for the corresponding service
and/or to determine whether the preferred server record is
expired and is updated based on another competitive evalua-
tion.

At aprocess 530, a request count is updated. Each time the
matching preferred server record is used to identify a pre-
ferred server, that use is recorded. When the preferred server
record includes a count-down field, the count-down field may
be decremented. When the preferred server record 600 is
used, the request_count field 660 may be incremented.

At a process 535, it is determined whether the matching
preferred server record is expired. Before the preferred server
record retrieved during process 525 is used to identify the
preferred server, it is first checked to determine whether it is
expired and needs to be updated by another competitive
evaluation. In some examples, the determination of process
535 may be designed so that a further competitive analysis is
not triggered until a service request is received after the pre-
ferred server record expires. This avoids performing the fur-
ther competitive analysis until continued use of the service is
requested by aclient. FIG. 7 is a simplified diagram of process
535 for determining whether a preferred server record is
expired according to some examples.

Ataprocess 710, it is determined whether the request count
for the preferred server record is greater than the maximum
number of allowed requests. When the preferred server record

US 9,407,721 B2

11

includes a count-down field, this may be determined when the
count-down field reaches zero and/or becomes negative.
When the preferred server record 600 is used, this may be
determined by comparing the request_count field 660 to the
max_requests field 650. When request counts are not
included in the preferred server record, it may be determined,
by default, that the request count does not exceed the maxi-
mum number of allowed requests. When the request count
exceeds the maximum number of allowed requests, the pre-
ferred server record is determined to be expired using a pro-
cess 740. When the request count does not exceed the maxi-
mum number of allowed requests, the preferred server record
is further evaluated beginning with a process 720.

At the process 720, it is determined whether the current
time is after an expiration time for the preferred server record.
When the preferred server record 600 is used, this may be
determined by comparing the current time to the valid_until
field 640. When the preferred server record does not include
an expiration time, it may be determined, by default, that the
current time is prior to the expiration time. When the current
time is after the expiration time, the preferred server record is
determined to be expired using the process 740. When the
current time is before the expiration time, the preferred server
record is determined to not be expired using a process 730.

Referring back to FIG. 5 and process 535, when the pre-
ferred server record is determined to be expired, a competitive
evaluation is performed beginning with the process 540.
When the preferred server record is determined to not be
expired, the preferred server record is used to determine the
preferred server using a process 550.

At the process 540, a competitive evaluation is performed.
The competitive evaluation includes sending the service
request received during process 505 to two or more servers,
such as any of the servers 431-439. FIG. 8 is a simplified
diagram of process 540 for performing a competitive evalu-
ation according to some examples.

At a process 805, application servers and/or transaction
processors are initialized. To support competitive evaluation
among two or more servers, a list of active or candidate
servers is first determined. The application servers hosted by
each of the active servers and/or the one or more transaction
processors used by the application servers are initialized and/
or setup to support the monitoring and/or supervision of the
transaction rollback and/or commit requests by the arbiter. In
some examples, the arbiter may send one or more instructions
to the application servers and/or the one or more transaction
processors. In some examples, the one or more transaction
processors are enhanced so that the rollback and/or the com-
mit operations may consult with the arbiter before allowing
those operations to complete. In some examples, a competi-
tive evaluation resource is added to each transaction through
either the application servers and/or the one or more transac-
tion processors. In some examples, the application servers
may be similar to application servers 441-449. In some
examples, the one or more transaction processors may be
similar to transaction processors 451-459. When each of the
application servers and/or the one or more transaction pro-
cessors are initialized, the arbiter may assemble a list of active
servers that support the competitive evaluation process.

Ataprocess 810, each of the servers in the active server list
is iterated through. The service request that forms the basis of
the competitive evaluation, such as the service request
received during process 505, is then forwarded to each server
that is to be competitively evaluated using a process 815. The
service request may be forwarded to each server over a net-
work. In some examples, the service request may be directed
to the application server being hosted on the respective server.

10

15

20

25

30

35

40

45

50

55

60

65

12

In some examples, the process may be received at the server
and/or the application server using a process similar to pro-
cess 310. As the application server begins to perform the
requested service, a corresponding transaction may be started
using a process 820. In some examples, process 820 may be
similar to process 320. Once the service request is forwarded
to each of the active servers and the respective processing
begins, the arbiter waits while the competitive evaluation
takes place.

At a process 825, the arbiter waits for notice of a rollback
oracommit to take place. The arbiter waits until the first of the
active servers that was forwarded the service request during
process 815 completes processing of the service request and
makes a transaction ending request such as a rollback request
oroperation and/or a commit request or operation. The first of
the active servers to complete the processing of the service
request is considered to be the most responsive server for the
service request and becomes the preferred server. The arbiter
determines the preferred server by waiting for the first of the
active servers to initiate a rollback or a commit operation that
occurs at the end of the processing for the service request. In
some examples, the arbiter is notified of the rollback and/or
the commit operation by the transaction processor based on
the mechanisms initialized during process 805.

At a process 830, the preferred server is recorded. The
preferred server determined during process 825 is recorded in
the preferred server record. In some examples, identify of the
preferred server may be determined from information asso-
ciated with the rollback and/or the commit request received
during process 825. In some examples, the preferred server is
recorded using the server_URL field 630.

At a process 835, it is determined whether the transaction-
ending request received during process 825 is a rollback or a
commit request. When the transaction-ending request is a
commit request, this indicates that the preferred server was
able to successfully process the service request and is asking
to complete its processing of the service request. This case is
handled beginning with a process 845. When the transaction-
ending request is a rollback request, this indicates that the
preferred server was not able to complete its processing of the
service request. Under the assumption that if one server is not
able to complete the service request then the same business
logic for the service in the other servers will reach the same
conclusion, each of the servers is instructed to rollback their
respective transaction using a process 840.

At the process 840, a rollback is sent to each of the active
servers. Once the preferred server fails to complete process-
ing of the service request and initiates a rollback operation,
each of the active servers that are being competitively evalu-
ated, including the preferred server, are instructed and/or
requested to roll back the respective transaction wrapping
their version of the service request. In some examples, the
preferred server may be notified right away in response to the
rollback request received during process 825. In some
examples, as each of the other active servers reaches the end
of its respective processing of the service request, a corre-
sponding rollback request may be received by the arbiter from
the one or more transaction processors and the arbiter may
instruct the one or more transaction processors to allow the
rollback to occur. In some examples, once each of the active
servers involved in the competitive evaluation rolls back their
respective transactions, the competitive evaluation com-
pletes. In some examples, process 840 may continue to
execute as a background and/or a threaded process so that the
preferred server record may be updated and the rest of method

US 9,407,721 B2

13

500 may complete, even though each of the active servers
have not yet completed their respective processing of the
service request.

At the process 845, the preferred server is allowed to com-
mit its transaction. By making its commit request first, the
preferred server is permitted to complete the requested com-
mit operation and becomes the only active server allowed to
perform a commit on its respective transaction wrapping the
service request.

At a process 850, a rollback is sent to each of the other
active servers. Once the preferred server completes its pro-
cessing of the service request and commits its respective
transaction, the other active servers that are also processing
the service request are instructed and/or requested to rollback
their respective transaction wrapping their version of the ser-
vice request. In some examples, as each of the other active
servers reaches the end of its respective processing of the
service request, a corresponding rollback and/or commit
request may be received by the arbiter from the one of the
transaction processors and the arbiter instructs that transac-
tion processor to force a rollback to occur. In some examples,
once each of the other active servers involved in the competi-
tive evaluation rolls back their respective transactions, the
competitive evaluation completes. In some examples, process
850 may continue to execute as a background and/or a
threaded process so that the preferred server record may be
updated and the rest of method 500 may complete, even
though each of the active servers have not yet completed their
respective processing of the service request.

Referring back to FIG. 5 and process 540, as result of the
competitive evaluation, the preferred server for the service
request received during process 505 is determined. The
matching preferred server record retrieved during process
525 or the preferred server record created during process 520
is updated to include information associated with the pre-
ferred server. In some examples, an address and/or URL for
the preferred server may be stored in the server_URL field
630. In some examples, the preferred server record may be
further updated with expiration information associated with
the preferred server record. In some examples, the request-
_count field 660 may be set to one and the max_requests field
650 may be set to a maximum number of allowed requests
before another competitive evaluation should take place. In
some examples, a count-down field of the preferred server
record may be set to the maximum number of allowed
requests. In some examples, the maximum number of allowed
requests may range from 10 to several hundred. In some
examples, the valid_until field 640 may be set to the current
time plus a desired time interval. In some examples, the
desired time interval may range from 1 to 60 minutes.

At a process 545, the preferred server record is saved. The
preferred server record, along with information associated
with the preferred server and/or the expiration information
determined during process 540 is saved in the data structure
and/or the database searched during process 510. Processing
of' the service request received during process 505 then com-
pletes beginning with a process 560.

Atthe process 550, the matching preferred server record is
updated. The matching preferred server record retrieved dur-
ing process 525 is saved in the data structure and/or the
database from which it was retrieved and replaces the previ-
ous version of the matching preferred server record in the data
structure and/or database.

At a process 555, the service request is forwarded to the
preferred server. The service request received during process
505 is forwarded to the preferred server associated with the
matching preferred server record. In some examples, the pre-

10

15

20

25

30

35

40

45

50

55

60

65

14

ferred server may be determined based on information stored
in the server_URL field 630 of the matching preferred server
record. In some examples, the application server in the pre-
ferred server receives the forwarded service request and
begins processing of the service request. In some examples,
the service request may be wrapped in a transaction using a
method similar to method 300. In some examples, a transac-
tion ending request at the end of the processing associated
with the service request may be monitored by the arbiter. In
some examples, the arbiter may allow the transaction ending
request to finish without forcing a rollback as there is no
competitive evaluation taking place. Processing of the service
request then completes beginning with the process 560.

At the process 560, a response is received from the pre-
ferred server. Once processing of the service request com-
pletes in the preferred server, the preferred server may return
a response. The response may include a final result and/or a
final status of the service request. In some examples, because
the preferred server received the service request from the
arbiter, the response may be returned to the arbiter.

At a process 565, the response is returned to the client. The
response received from the preferred server is returned to the
client from which the service request was received during
process 505.

FIG. 9 is a simplified diagram of a computing device 900
according to some examples. Computing device 900 may be
any suitable workstation, cluster, server, virtual machine,
and/or the like. Computing device 900 includes a processor
910 coupled to memory 920. In some examples, processor
910 may control operation and/or execution of hardware and/
or software on computing device 900. Although only one
processor 910 is shown, computing device 900 may include
multiple processors, multi-core processors, and/or the like. In
some examples, computing device 900 may also be coupled
to one or more other computing devices via a network 940.
Network 940 may be any kind of network including a local
area network (LAN), such as an Ethernet, and/or a wide area
network (WAN), such as the internet.

Memory 920 may be used to store one or more applications
930 that may be executed by processor 910. The one or more
applications 930 may include one or more of any of the
various applications and/or subsystems described in greater
detail above with respect to FIGS. 3-8. These one or more
applications 930 may include any of the application servers,
the one or more transaction processors 440, the arbiter 420,
and/or one or more of the clients 411-419. In some examples,
the same computing device 900 may be used to host the
arbiter 420 alone or the arbiter 420 along with transaction
processor 440. In some examples, each of the computing
devices 900 hosting an application server may host its own
transaction processor 440. In some examples, the one or more
transaction processors 440 may be hosted in separate com-
puting devices 900. In some examples, separate virtual
machines hosted on the same computing device 900 may be
used to separately host each of the one or more applications
930. The combinations of computing devices 900 and appli-
cations 930 are very flexible and may be adjusted to suit the
needs of cloud computing and/or the like.

Some examples of computing device 900 associated with
arbiter 420 may include non-transient, tangible, machine
readable media (e.g., memory 920) that includes executable
code that when run by one or more processors (e.g., processor
910) may cause the one or more processors to perform the
processes of method 500 as described above. Some common
forms of machine readable media that may include the pro-
cesses of method 500 are, for example, floppy disk, flexible
disk, hard disk, magnetic tape, any other magnetic medium,

US 9,407,721 B2

15

CD-ROM,; any other optical medium, punch cards, paper
tape, any other physical medium with patterns of holes,
RAM, PROM, EPROM, FLASH-EPROM, any other
memory chip or cartridge, and/or any other medium from
which a processor or computer is adapted to read.

Although illustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution is contemplated in the foregoing disclosure and in some
instances, some features of the embodiments may be

employed without a corresponding use of other features. One 10

of ordinary skill in the art would recognize many variations,
alternatives, and modifications. Thus, the scope of the inven-
tion should be limited only by the following claims, and it is
appropriate that the claims be construed broadly and in a
manner consistent with the scope of the embodiments dis-
closed herein.

What is claimed is:

1. A method of processing a service request, the method
comprising:

receiving the service request at an arbiter running on a

computing device, the service request being received
from a client;

determining whether the service request is associated with

a preferred server;

when the service request is not associated with the pre-

ferred server:

using the arbiter to coordinate a competitive evaluation
among a plurality of active servers by sending the
service request in parallel to each of the plurality of
active servers;

selecting as the preferred server a first one of the active
servers that completes processing of the service
request before the others;

preventing others ofthe active servers other than the first
one of the active servers from completing processing
of the service request;

associating the preferred server with the service request;

receiving a response to the service request from the
preferred server; and

returning the response to the client.

2. The method of claim 1 wherein determining whether the
service request is associated with the preferred server com-
prises searching for a preferred server record matching one or
more characteristics of the service request.

3. The method of claim 2 wherein the one or more charac-
teristics are each selected from a group consisting of a client
identifier associated with the client and a service identifier
associated with a service requested in the service request.

4. The method of claim 2 wherein determining whether the
service request is associated with the preferred server further
comprises determining whether the preferred server record is
expired.

5. The method of claim 4 wherein determining whether the
preferred server record is expired comprises determining that
the preferred server record is expired when a current time is
after an expiration time associated with the preferred server
record.

6. The method of claim 5 wherein the expiration time is
stored in a valid until field of the preferred server record.

7. The method of claim 5 wherein the expiration time is
between one and sixty minutes after a time of a last competi-
tive evaluation that selected the preferred server.

8. The method of claim 4 wherein determining whether the
preferred server record is expired comprises determining that
the preferred server record is expired when a number of times
the preferred server record has been used to determine the
preferred server exceeds a threshold.

15

20

25

30

35

40

45

50

55

60

65

16

9. The method of claim 8 wherein the threshold is selected
from a range from 10 to 200.

10. The method of claim 1 wherein associating the pre-
ferred server with the service request comprises saving a
preferred server record in a data structure or a database.

11. The method of claim 1 wherein using the arbiter to
coordinate the competitive evaluation among the plurality of
active servers comprises:

sending initialization instructions to an application server

or a transaction processor associated with each of the
active servers so that the arbiter is notified of rollback
operations and commit operations initiated on the active
servers;

forwarding the service request to each of the active servers;

and

waiting for a first notification that the first one of the active

servers has initiated a first rollback operation or a first
commit operation;

wherein the first notification is received prior to any second

notification that any other of the active servers has ini-
tiated a respective second rollback operation or a respec-
tive second commit operation.

12. The method of claim 11 wherein using the arbiter to
coordinate the competitive evaluation among the plurality of
active servers further comprises confirming, by the arbiter,
that the first rollback operation or the first commit operation
is allowed to complete.

13. The method of claim 12 wherein using the arbiter to
coordinate the competitive evaluation among the plurality of
active servers further comprises returning, by the arbiter, an
instruction that each of the other of the active servers perform
a rollback when each respective second notification is
received.

14. The method of claim 1, further comprising updating a
request count in a preferred server record associated with the
service request when the service request is associated with the
preferred server.

15. A system for processing service requests, the system
comprising:

a computing device comprising one or more processors

coupled to memory; and

an arbiter stored in the memory and executed by the one or

more processors;

wherein the computing device is configured to communi-

cate with a client and a plurality of active servers;
wherein the arbiter is configured to:
receive a service request from the client;
determine whether the service request is associated with
a preferred server;
forward the service request to the preferred server when
the service request is associated with the preferred
server;
when the service request is not associated with the pre-
ferred server:
coordinate a competitive evaluation among the plu-
rality of active servers by sending the service
request in parallel to each of the plurality of active
servers;
select as the preferred server a first one of the active
servers that completes processing of the service
request before the others;
prevent others of the active servers other than the first
one of the active servers from completing process-
ing of the service request;
and
associate the preferred server with the service request;

US 9,407,721 B2

17

receive a response to the service request from the pre-
ferred server; and
return the response to the client.
16. The system of claim 15 wherein:
the arbiter is further configured to:
send initialization instructions to an application server
or a transaction processor associated with each of the
active servers so that the arbiter is notified of rollback
operations and commit operations initiated on the
active servers;
forward the service request to each of the active servers;
and
wait for a first notification that the first one of the active
servers has initiated a first rollback operation or a first
commit operation; and
wherein the first notification is received prior to any second
notification that any other of the active servers has ini-
tiated a respective second rollback operation or a respec-
tive second commit operation.
17. The system of claim 16 wherein the arbiter is further

configured to:

confirm that the first rollback operation or the first commit
operation is allowed to complete; and

return an instruction that each of the other of the active
servers perform a rollback when each respective second
notification is received.

18. A non-transitory machine-readable medium compris-

ing a first plurality of machine-readable instructions which
when executed by one or more processors associated with an
arbiter are adapted to cause the one or more processors to
perform a method comprising:

receiving a first request from a client;
determining whether the first request is associated with a
first server by matching one or more properties of the
first request to a corresponding one or more fields of a
server record associated with the first server;
when the first request is not associated with the first server:
using the arbiter to coordinate a competitive evaluation
among a plurality of second servers by sending the

10

20

25

40
first request in parallel to each of the plurality of

second servers;

18

selecting as the first server a first one of the second
servers that completes handling of the first request
before any other of the second servers;

preventing others of the second servers other than the
first server from completing processing of the first
request;

associating the first server with the first request;

receiving a response to the first request from the first

server; and

returning the response to the client.

19. The non-transitory machine-readable medium of claim
18, further comprising a second plurality of machine-read-
able instructions which when executed by the one or more
processors are adapted to cause the one or more processors to
perform a method comprising:

sending setup instructions to an application server or a

transaction manager associated with each of the second
servers so that the arbiter is notified of any transaction
ending requests made on the second servers;
forwarding the first request to each of the second servers;
waiting for a first notification that the first one of the second
servers has made a first transaction ending request; and
recording the first server in a server field of the server
record;
wherein the first notification is received prior to any second
notification that any other of the second servers has
made a respective second transaction ending request;

wherein the first transaction ending request and the second
transaction ending request are each selected from a
group consisting of a rollback request and a commit
request.

20. The non-transitory machine-readable medium of claim
19, further comprising a third plurality of machine-readable
instructions which when executed by the one or more proces-
sors are adapted to cause the one or more processors to per-
form a method comprising:

confirming that the first transaction ending request is

allowed to complete; and

responding to each second notification by requesting that

the corresponding second server associated with the sec-
ond notification perform a rollback operation.

#* #* #* #* #*

